Exploratory Data Analysis

Jennell Hall

2023-09-20
\#\#Attaching package:'dplyr'
\#\#The following objects are masked from 'package:stats': \#\# \#\# filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

```
library(forcats)
library(knitr)
library(sjPlot)
depress <- read.delim("/Users/nellz/Desktop/Math 130/homework/Notes /data/depress_081217.txt", header=T
dim(depress)
## [1] 294 37
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
```

1. Introduction This data set is adult residents in Los Angeles County that are being interviewed about depression. It has a data set of observations and 37 variables.If you want to get more 'details about te study it can found in Practical Multivariate Analysis,5th edition by Afifi, May and Clark. I will be examing the relationship between sex, depression and age those are my two variables.
2. Univariate Descriptions Females and Males: The table shows how many males anf females were interviewed and volunteered to be in the study
```
summary(depress$sex)
```

\#\#	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
\#\#	0.0000	0.0000	1.0000	0.6224	1.0000	1.0000

depress\$sex<- factor(depress\$sex, labels = c("females","males"))
table(depress\$sex)
$\begin{array}{lrr}\text { \#\# } & & \\ \text { \#\# females } & \text { males } \\ \text { \#\# } & 111 & 183\end{array}$
ggplot(depress, aes(x=sex)) + geom_bar() + ggtitle("The Amount of Females \& Males in the Study ")

The Amount of Females \& Males in the Study

The bar shows how many more males there were in the study and how few of the females actually partticipate in the study.Maybe that will make a difference in my research queation.

```
table(depress$employ)
```

\#\#
\#\# FT Houseperson In School Other PT Retired

This table shows how many people in th study that are retired, in school, unemployment, full time, housepersonand part time

```
ggplot(depress, aes(x=employ, fill=employ))+ geom_bar()+ ggtitle("Employment staus in the Depression S
```

Employment staus in the Depression Study

The bar graph shows the individuals levels of employment.As you can see in the graph most people in the study are full time. A lower percent of them are in school or unemploy.
3.Bivariate Comparison

```
table(depress$sex, depress$employ)
```

\#\#							
\#\#		FT	Houseperson	In School	Other	PT	Retired
\#nemp							
\#\#	females	81	0	1	2	10	13
\#\#	males	86	27	1	2	32	25

The table above shows the different levels of employment status from females and males

```
ggplot(depress, aes(x=employ, fill=sex)) + geom_bar(position = "dodge")+ ggtitle("Employment Level of l
```


Shown in the graph you can see the more males that have a full time job were more depressed then females who had a full time job

```
ggplot(depress, aes(x =cesd, y =sex , color = employ)) +
    geom_jitter(width = .3) + ggtitle("Sex & Employment vs.CESD Scores")
```


Sex \& Employment vs.CESD Scores

The Females that a full time job had an higher CESD score.
4.Conclusion The average female who had a full-time job were the ones who were more depressed and a high CESD score. The males were more depressed then the females.

