Lesson 08 - Data management and aggregation using dplyr

Last Updated 01-18-2022

[Introduction (video)]

When working with data you must:

1. Figure out what you want to do.
2. Precisely describe what you want in the form of a computer program.
3. Execute the code.

The dplyr package makes each of these steps as fast and easy as possible by:

1. Elucidating the most common data manipulation operations, so that your options are helpfully con-
strained when thinking about how to tackle a problem.

2. Providing simple functions that correspond to the most common data manipulation verbs, so that you
can easily translate your thoughts into code.

3. Using efficient data storage back ends, so that you spend as little time waiting for the computer as
possible.

Student Learning Outcomes

After completing this lesson students will be able to

o Explain the difference between a data.table and a tibble.

e Build and execute a chain of command to accomplish a data management task
o Extract certain rows using select.

o Create new variables using mutate.

e Rename variables using rename

e Subset the data based on a criteria using filter.

o Create summary statistics using group_by and summarize

e Learn how to use code chunk options to disable warning messages.

Preparation

Prior to this lesson students should

o Download the [08 dplyr notes.Rmd] R markdown file and save into your Math130/notes folder.
e FEnsure that the dplyr and nyflights13 data sets are installed by running the first code chunk.

library(dplyr)
flights <- nycflights13::flights
Exploring airline flight data with dplyr.

The nycflights13 package contains several data sets that can be used to help understand what causes
delays. We will be using the flights data set which contains information about all flights that departed

08_dplyr_notes.Rmd

from NYC (e.g. EWR, JFK and LGA) in 2013.

Tibbles

The flights data set, and any data set created with dplyr, has a specific data type called a tibble. These
are not as furry and prolific as their cousins the tribbles. tibbles behaves for all intents and purposes
as a data.frame, just gets displayed differently. For example, the flights data set contains data on 19
characteristics (variables) from 336,776 flights. There’s no way I would want to print out a data set that
large. But I'm gonna. ...

flights

A tibble: 336,776 x 19

year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
<int> <int> <int> <int> <int> <dbl> <int> <int>
1 2013 1 1 517 515 2 830 819
2 2013 1 1 533 529 4 850 830
3 2013 1 1 542 540 2 923 850
4 2013 1 1 544 545 -1 1004 1022
5 2013 1 1 554 600 -6 812 837
6 2013 1 1 554 558 -4 740 728
7 2013 1 1 555 600 -5 913 854
8 2013 1 1 557 600 -3 709 723
9 2013 1 1 557 600 -3 838 846
10 2013 1 1 558 600 -2 753 745
... with 336,766 more rows, and 11 more variables: arr_delay <dbl>,

carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

The output has been trimmed to something more reasonable for our viewing pleasure. This may not seem
such a big deal because R Studio already provides some level of truncation for our viewing pleasure.

[Basic verbs (video)]

The dplyr package contains new data manipulation functions, also called verbs. We will look at the following
verbs:

e filter(): Returns a subset of the rows.

e select(): Returns only the listed columns.

e rename(): Renames the variables listed.

e mutate(): Adds columns from existing data.

o summarise(): Reduces each group to a single row by calculating aggregate measures.

o group_by(): Groups a data set on a factor variable, such that all functions performed are then done
on each level of the factor.

Filter

filter () allows you to select a subset of the rows of a data frame. The first argument is the name of the
data frame, and the second and subsequent are filtering expressions evaluated in the context of that data
frame. For example, we can select all flights on January 1st with

filter(flights, month == 1, day == 1)

A tibble: 842 x 19

year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
<int> <int> <int> <int> <int> <dbl> <int> <int>
1 2013 1 1 517 515 2 830 819
2 2013 1 1 533 529 4 850 830
3 2013 1 1 542 540 2 923 850
4 2013 1 1 544 545 -1 1004 1022
5 2013 1 1 554 600 -6 812 837
6 2013 1 1 554 558 -4 740 728
7 2013 1 1 555 600 -5 913 854
8 2013 1 1 557 600 -3 709 723
9 2013 1 1 557 600 -3 838 846
10 2013 1 1 558 600 -2 753 745
... with 832 more rows, and 11 more variables: arr_delay <dbl>,

carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

filter () works similarly to subset () except that you can give it any number of filtering conditions which
are joined together with &. You can use other Boolean operators explicitly. Here we select flights in January
or February.

filter(flights, month == 1 | month == 2)

A tibble: 51,955 x 19

H# year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
<int> <int> <int> <int> <int> <dbl> <int> <int>
1 2013 1 1 517 515 2 830 819
2 2013 1 1 533 529 4 850 830
3 2013 1 1 542 540 2 923 850
4 2013 1 1 544 545 -1 1004 1022
5 2013 1 1 554 600 -6 812 837
6 2013 1 1 554 5568 -4 740 728
7 2013 1 1 555 600 -5 913 854
8 2013 1 1 557 600 -3 709 723
9 2013 1 1 557 600 -3 838 846
10 2013 1 1 558 600 -2 753 745
... with 51,945 more rows, and 11 more variables: arr_delay <dbl>,

carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

Select

Often you work with large data sets with many columns where only a few are actually of interest to you.
select () allows you to rapidly zoom in on a useful subset using operations that usually only work on numeric
variable positions.

select(flights, month, day, year)

A tibble: 336,776 x 3
#it month day year

<int> <int> <int>
1 1 1 2013
2 1 1 2013

##
##
##
##
##
##
##
10

© 00 ~NO 0O W

...

N N = SNy SN

1

e e

1

2013
2013
2013
2013
2013
2013
2013
2013

with 336,766 more rows

You can use a colon (:) to select all columns physically located between two variables.

select(flights, year:day)

A tibble: 336,776 x 3
year month
<int> <int>

##
##
##
##
##
##
##
##
##
##

© 00N O WN -

H# #
H# #*
=
o

#t# ...

2013
2013
2013
2013
2013
2013
2013
2013
2013
2013

N e

1

day
<int>
1

e

1

with 336,766 more rows

To exclude specific columns you use the minus sign (-)

select(flights, -carrier)

A tibble: 336,776 x 18
year month
<int> <int>

##
##
##
##
##
##
##
##
##
##
##
##

© 00N O WN -

-
o

#H# ...

#H# #
#it #

This also works to exclude all columns EXCEPT the ones between two variables.

2013
2013
2013
2013
2013
2013
2013
2013
2013
2013

N e

1

day dep_time sched_dep_time dep_delay arr_time sched_arr_time

<int>
1

e

1

<i

nt>
517
533
542
544
554
554
555
557
557
558

<int>
515
529
540
545
600
558
600
600
600
600

with 336,766 more rows, and 10 more variables:
flight <int>, tailnum <chr>, origin <chr>, dest

<dbl> <int>
2 830
4 850
2 923
-1 1004
-6 812
-4 740
-5 913
-3 709
-3 838
-2 753

distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

select(flights, -(year:day))

A tibble:

##
##
1

<int>

517

336,776 x 16
dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay carrier
<dbl> <chr>

<int>
515

<dbl>
2

<int>
830

<int>
819

arr_delay <dbl>,
<chr>, air_time <dbl>,

11 UA

<int>
819
830
850
1022
837
728
854
723
846
745

2 533 529 4 850 830 20 UA
3 542 540 2 923 850 33 AA
4 544 545 -1 1004 1022 -18 B6
5 554 600 -6 812 837 -25 DL
6 554 558 -4 740 728 12 UA
7 555 600 -5 913 854 19 B6
8 557 600 -3 709 723 -14 EV
9 557 600 -3 838 846 -8 B6
10 558 600 -2 753 745 8 AA
... with 336,766 more rows, and 9 more variables: flight <int>,

tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
hour <dbl>, minute <dbl>, time_hour <dttm>

Rename

Sometimes variables come to you in really obscure naming conventions. What the heck is SBA6417 New to
dplyr 1.0.0 is the rename () function. Works like magic to convert old name to a new name. The generic
syntax is rename (new = o0ld)

So to rename dep_time to departure_time we would type

rename (flights, dep_time)

A tibble: 336,776 x 19

year month day departure_time sched_dep_time dep_delay arr_time
#it <int> <int> <int> <int> <int> <dbl> <int>
1 2013 1 1 517 515 2 830
2 2013 1 1 533 529 4 850
3 2013 1 1 542 540 2 923
4 2013 1 1 544 545 -1 1004
5 2013 1 1 554 600 -6 812
6 2013 1 1 554 558 -4 740
7 2013 1 1 555 600 -5 913
8 2013 1 1 557 600 -3 709
9 2013 1 1 557 600 -3 838
10 2013 1 1 558 600 -2 753
... with 336,766 more rows, and 12 more variables: sched_arr_time <int>,

arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, origin <chr>,
dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>,
time_hour <dttm>

The variable name on the 3rd column now says departure_time instead of dep_time.

For the purpose of these lecture notes I am not making this change permenant. There is no
assignment operator <- used here, so this change is not going to persist into later code.

Mutate
As well as selecting from the set of existing columns, it’s often useful to add new columns that are functions
of existing columns. This is the job of mutate()!

Here we create two variables: gain (as arrival delay minus departure delay) and speed (as distance divided by
time, converted to hours).

a <- mutate(flights, arr_delay - dep_delay,
distance / air_time * 60)
select(a, gain, distance, air_time, speed)

A tibble: 336,776 x 4

gain distance air_time speed
<dbl> <dbl> <dbl> <dbl>
1 9 1400 227 370.
2 16 1416 227 374.
3 31 1089 160 408.
4 -17 1576 183 b517.
5 -19 762 116 394.
6 16 719 150 288.
T 24 1065 158 404.
8 -11 229 53 2569.
9 -5 944 140 405.
10 10 733 138 319.
... with 336,766 more rows

One key advantage of mutate is that you can refer to the columns you just created. Mutate flights to create
two variables, gain = arr_delay - dep_delay and gain_per_hour = gain / (air_time / 60).

mutate (flights, arr_delay - dep_delay,
gain / (air_time / 60))

A tibble: 336,776 x 21

#H# year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
<int> <int> <int> <int> <int> <dbl> <int> <int>
1 2013 1 1 517 515 2 830 819
2 2013 1 1 533 529 4 850 830
3 2013 1 1 542 540 2 923 850
4 2013 1 1 544 545 -1 1004 1022
5 2013 1 1 554 600 -6 812 837
6 2013 1 1 554 558 -4 740 728
7 2013 1 1 555 600 -5 913 854
8 2013 1 1 557 600 -3 709 723
9 2013 1 1 557 600 -3 838 846
10 2013 1 1 558 600 -2 753 745
... with 336,766 more rows, and 13 more variables: arr_delay <dbl>,

carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>,
gain <dbl>, gain_per_hour <dbl>

Summarize

The last verb is summarise (), which collapses a data frame to a single row. It’s not very useful yet. We can
create a new variable called delay that is the average departure delay on the entire flights data set.

summarise(flights, mean (dep_delay, TRUE))

A tibble: 1 x 1

delay
<dbl>
1 12.6

[Grouped Operations (video)]

The above verbs are useful, but they become really powerful when you combine them with the idea of “group
by”, repeating the operation individually on groups of observations within the dataset. In dplyr, you use
the group_by () function to describe how to break a dataset down into groups of rows. You can then use
the resulting object in exactly the same functions as above; they’ll automatically work “by group” when the
input is a grouped.

Let’s demonstrate how some of these functions work after grouping the flights data set by month. First we’ll
create a new data set that is grouped by month.

by_month <- group_by(flights, month)

e The summarise() verb allows you to calculate summary statistics for each group. This is probably the
most common function that is used in conjunction with group_by. For example, the average distance
flown per month.

summarise (by_month, mean(distance, TRUE))

A tibble: 12 x 2

month avg_airtime
<int> <dbl>
##H 1 1 1007.
2 2 1001.
3 3 1012.
4 4 1039.
5 5 1041.
6 6 1057.
#H7 7 1059.
8 8 1062.
9 9 1041.
10 10 1039.
11 11 1050.
12 12 1065.

Or simply the total number of flights per month.

summarize (by_month, n())

A tibble: 12 x 2

month count
<int> <int>
##t 1 1 27004
2 2 24951
3 3 28834
4 4 28330
5 5 28796
6 6 28243
#Ht 7 7 29425
8 8 29327
9 9 27574
10 10 28889
11 11 27268

12 12 28135

[Chaining Operations (video)]

Consider the following group of operations that take the data set flights, and produce a final data set (a4)
that contains only the flights where the daily average delay is greater than a half hour.

al <- group_by(flights, year, month, day)

a2 <- select(al, arr_delay, dep_delay)

Adding missing grouping variables: “year , “month”, “day"
a3 <- summarise(a2,
mean (arr_delay, TRUE) ,
mean (dep_delay, TRUE))
~summarise()” has grouped output by 'year', 'month'. You can override using the °.groups” argument.

a4 <- filter(a3, arr > 30 | dep > 30)
head (a4)

A tibble: 6 x 5

Groups: year, month [3]

year month day arr dep
<int> <int> <int> <dbl> <dbl>

1 2013 1 16 34.2 24.6
2 2013 1 31 32.6 28.7
3 2013 2 11 36.3 39.1
4 2013 2 27 31.3 37.8
5 2013 3 8 85.9 83.5
6 2013 3 18 41.3 30.1

It does the trick, but what if you don’t want to save all the intermediate results (al - a3)? Well these verbs
are function, so they can be wrapped inside other functions to create a nesting type structure.

filter(
summarise (
select(
group_by(flights, year, month, day),
arr_delay, dep_delay

),
mean(arr_delay, TRUE) ,
mean(dep_delay, TRUE)
s
arr > 30 | dep > 30

)

Woah, that is HARD to read! This is difficult to read because the order of the operations is from inside to
out, and the arguments are a long way away from the function. To get around this problem, dplyr provides
the %>% operator. x %>% £(y) turns into £(x, y) so you can use it to rewrite multiple operations so you
can read from left-to-right, top-to-bottom:

flights %>%
group_by(year, month, day) %>%
select(arr_delay, dep_delay) %>%
summarise (
mean(arr_delay, TRUE) ,
mean (dep_delay, TRUE)
) W>h
filter(arr > 30 | dep > 30)

Adding missing grouping variables: “year™, “month”, “day"

~summarise()” has grouped output by 'year', 'month'. You can override using the

year, month [11]
arr
<dbl>

34.
32.
36.
31.
85.
41.
38.
36.
36.
47.

A tibble: 49 x 5
Groups:

H# year month day
<int> <int> <int>
1 2013 1 16
2 2013 1 31
3 2013 2 11
4 2013 2 27
5 2013 3 8
6 2013 3 18
7 2013 4 10
8 2013 4 12
9 2013 4 18
10 2013 4 19
... with 39 more rows

© OO W WOWWwWwoHN

dep
<dbl>

24.
28.
39.
37.
83.
30.
33.
34.
34.
46.

6

= O 00 O+~ U1 0~ N

.groups” argument.

Another way you can read this is by thinking “and then” when you see the %>% operator. So the above code
takes the data set flights

. and then groups by day
. and then selects the delay variables

. and then calculates the means
. and then filters on a delay over half hour.

The same 4 steps that resulted in the a4 data set, but without all the intermediate data saved! This can be
very important when dealing with Big Data. R stores all data in memory, so if your little computer only
has 2G of RAM and you’re working with a data set that is 500M in size, your computers memory will be
used up fast. a1l takes 500M, a2 another 500M, by now your computer is getting slow. Make another copy at
a3 and it gets worse, a4 now likely won’t even be able to be created because you’ll be out of memory.

Go Back to Week 3

	[Introduction (video)]
	Student Learning Outcomes
	Preparation
	Exploring airline flight data with dplyr.

	Tibbles
	[Basic verbs (video)]
	Filter
	Select
	Rename
	Mutate
	Summarize

	[Grouped Operations (video)]
	[Chaining Operations (video)]
	Go Back to Week 3

