
Lesson 07 - Creating graphics

Last Updated 01-18-2022

This lesson is a brief excerpt from the [Applied Statistics Notebook].

[Introduction (video)]

Visualizing your data is hands down the most important thing you can learn to do. Seeing is critical to
understanding. There are two audiences in mind when creating data visualizations:

1. For your eyes only (FYEO). These are quick and dirty plots, without annotation. Meant to be looked
at once or twice.

2. To share with others. These need to completely stand on their own. Axes labels, titles, colors as
needed, possibly captions.

You will see, and slowly learn, how to add these annotations and how to clean up your graphics to make them
sharable. Functions inside the ggplot2 package automatically does a lot of this work for you. Remember
this package has to be loaded prior to being able to access the functions within.

Student Learning Outcomes

After completing this lesson students will be able to

• create basic data visualizations

Prior to this lesson learners should

• Download the [07_plots_notes.Rmd] R markdown file and save into your Math130/notes folder.

The syntax of ggplot

The reason we use the functions in ggplot2 is for consistency in the structure of it’s arguments. Here is a
bare bones generic plotting function:

ggplot(data, aes(x=x, y=y, col=col, fill=fill, group=group)) + geom_THING()

Required arguments

• data: What data set is this plot using? This is ALWAYS the first argument.
• aes(): This is the aesthetics of the plot. What variable is on the x, and what is on the y? Do you

want to color by another variable, perhaps fill some box by the value of another variable, or group by
a variable.

• geom_THING(): Every plot has to have a geometry. What is the shape of the thing you want to plot?
Do you want to plot point? Use geom_points(). Want to connect those points with a line? Use
geom_lines(). We will see many varieties in this lab.

1

https://norcalbiostat.github.io/AppliedStatistics_notes/data-viz.html
07_plots_notes.Rmd

The Diamonds Data

We will use a subset of the diamonds dataset that comes with the ggplot2 package. This dataset contains
the prices and other attributes of almost 54,000 diamonds. Review ?diamonds to learn about the variables
we will be using.

library(ggplot2)
diamonds <- ggplot2::diamonds
set.seed(1410) # Make the sample reproducible
dsmall <- diamonds[sample(nrow(diamonds), 1000),]

[Univariate (One Variable) (video)]

Categorical variables

Both Nominal and Ordinal data types can be visualized using the same methods: tables, barcharts and pie
charts.

Tables

Tables are the most common way to get summary statistics of a categorical variable. The table() function
produces a frequency table, where each entry represents the number of records in the data set holding the
corresponding labeled value.

table(dsmall$cut)

##
Fair Good Very Good Premium Ideal
34 99 220 257 390

There are 34 Fair quality diamonds, 99 Good quality diamonds, and 390 Ideal quality diamonds in this
sample.

Barcharts / Barplots

A Barchart or barplot takes these frequencies, and draws bars along the X-axis where the height of the bars
is determined by the frequencies seen in the table.

The geometry needed to draw a barchart in ggplot is geom_bar().

ggplot(dsmall, aes(x=cut)) + geom_bar()

2

0

100

200

300

400

Fair Good Very Good Premium Ideal
cut

co
un

t

We can reorder these levels on the fly so they are being shown in decreasing frequency using the fct_infreq
function from the forcats library.

ggplot(dsmall, aes(x=forcats::fct_infreq(cut))) + geom_bar() + xlab("cut")

3

0

100

200

300

400

Ideal Premium Very Good Good Fair
cut

co
un

t

Special note. The :: notation is a shortcut to use a function from inside a package without
actually loading the entire package. This can be useful when you’re only using a function once
or twice in an analysis.

Continuous variable

The price, carat, and depth of the diamonds are all continuous variables. Let’s explore the distribution of
price.

Histograms

Rather than showing the value of each observation, we prefer to think of the value as belonging to a bin.
The height of the bars in a histogram display the frequency of values that fall into those of those bins.

Since the x-axis is continuous the bars touch. This is unlike the barchart that has a categorical x-axis, and
vertical bars that are separated.

ggplot(dsmall, aes(x=price)) + geom_histogram()

4

0

50

100

150

200

250

0 5000 10000 15000 20000
price

co
un

t

Density plots

To get a better idea of the true shape of the distribution we can “smooth” out the bins and create what’s
called a density plot or curve. Notice that the shape of this distribution curve is much. . . “wigglier” than
the histogram may have implied.

ggplot(dsmall, aes(x=price)) + geom_density()

5

0.00000

0.00005

0.00010

0.00015

0.00020

0 5000 10000 15000
price

de
ns

ity

Histograms + density

Often it is more helpful to have the density (or kernel density) plot on top of a histogram plot.

• The syntax starts the same: we’ll add a new geom, geom_density and color the line blue.
• Then we add the histogram geom using geom_histogram but must specify that the y axis should be

on the density, not frequency, scale.

– Note that this has to go inside the aesthetic statement aes().

• I’m also going to get rid of the fill by using NA so the colored bars don’t plot over the density line.

ggplot(dsmall, aes(x=price)) + geom_density(col="blue") +
geom_histogram(aes(y=..density..), colour="black", fill=NA)

6

0e+00

1e−04

2e−04

3e−04

4e−04

0 5000 10000 15000 20000
price

de
ns

ity

Boxplots

Another very common way to visualize the distribution of a continuous variable is using a boxplot. Boxplots
are useful for quickly identifying where the bulk of your data lie. R specifically draws a “modified” boxplot
where values that are considered outliers are plotted as dots.

boxplot(dsmall$price)

7

base 0
50

00
10

00
0

15
00

0

Notice that the only axis labeled is the y=axis. Like a dotplot the x axis, or “width”, of the boxplot is
meaningless here. We can make the axis more readable by flipping the plot on its side.

boxplot(dsmall$price, horizontal = TRUE, main="Distribution of diamond prices", xlab="Dollars")

0 5000 10000 15000

Distribution of diamond prices

Dollars

Horizontal is a bit easier to read in my opinion.

What about ggplot? ggplot doesn’t really like to do univariate boxplots. You’ll see those later when we
create one boxplot per group.

8

New variable

Before we move on, I want to see price displayed as ranges of 5,000 instead of a continuous measure from
0 to 20,000. I will us the cut_width function to create a new categorical variable here called price_range.
See this page for this, and other functions in ggplot that discretize numeric data into categorical.

dsmall$price_range <- cut_width(dsmall$price/1000, width=5)

Notice I also divided price by 1000, so 2.5 means 2500. Now that price_range is a categorical variable, I
can create a barchart to visualize the frequencies of each bin.

ggplot(dsmall, aes(x=price_range)) + geom_bar()

0

100

200

300

400

500

[−2.5,2.5] (2.5,7.5] (7.5,12.5] (12.5,17.5] (17.5,22.5]
price_range

co
un

t

[Bivariate (Two Variables) (video)]

Categorical v. Categorical

Two-way Tables

Cross-tabs, cross-tabulations and two-way tables (all the same thing, different names) can be created by
using the table() function.

9

https://ggplot2.tidyverse.org/reference/cut_interval.html

Frequency table The frequency table is constructed using the table() function.

table(dsmall$cut, dsmall$price_range)

##
[-2.5,2.5] (2.5,7.5] (7.5,12.5] (12.5,17.5] (17.5,22.5]
Fair 15 13 4 1 1
Good 41 45 8 5 0
Very Good 108 78 22 12 0
Premium 111 86 35 20 5
Ideal 237 103 34 14 2

There are 3 Fair diamonds that cost between 7.5 and 12.5 thousand dollars, and 111 Ideal quality diamonds
that cost between 2.5 and 7.5k.

Cell proportions Wrapping prop.table() around a table gives you the cell proportions.

table(dsmall$cut, dsmall$price_range) %>% prop.table()

##
[-2.5,2.5] (2.5,7.5] (7.5,12.5] (12.5,17.5] (17.5,22.5]
Fair 0.015 0.013 0.004 0.001 0.001
Good 0.041 0.045 0.008 0.005 0.000
Very Good 0.108 0.078 0.022 0.012 0.000
Premium 0.111 0.086 0.035 0.020 0.005
Ideal 0.237 0.103 0.034 0.014 0.002

• 0.7% of all diamonds are Fair cut and cost under 2.5k.
• 0.1% of all diamonds are Premium cut and cost over 17.5k

Row proportions To get the row proportions, specify margin=1. The percentages now add up to 1 across
the rows.

table(dsmall$cut, dsmall$price_range) %>% prop.table(margin=1) %>% round(3)

##
[-2.5,2.5] (2.5,7.5] (7.5,12.5] (12.5,17.5] (17.5,22.5]
Fair 0.441 0.382 0.118 0.029 0.029
Good 0.414 0.455 0.081 0.051 0.000
Very Good 0.491 0.355 0.100 0.055 0.000
Premium 0.432 0.335 0.136 0.078 0.019
Ideal 0.608 0.264 0.087 0.036 0.005

• 25.9% of Fair quality diamonds cost under 2.5k
• 1.3% of Very Good quality diamonds cost over 17.5k.

Column proportions To get the column proportions, you specify margin=2. The percentages now add
up to 1 down the columns.

10

table(dsmall$cut, dsmall$price_range) %>% prop.table(margin=2) %>% round(3)

##
[-2.5,2.5] (2.5,7.5] (7.5,12.5] (12.5,17.5] (17.5,22.5]
Fair 0.029 0.040 0.039 0.019 0.125
Good 0.080 0.138 0.078 0.096 0.000
Very Good 0.211 0.240 0.214 0.231 0.000
Premium 0.217 0.265 0.340 0.385 0.625
Ideal 0.463 0.317 0.330 0.269 0.250

• 7.8% of diamonds that cost under 2.5k are of Good quality
• 20% of diamonds that cost over 17.5k are Premium quality

Grouped bar charts

To compare proportions of one categorical variable within the same level of another, is to use grouped
barcharts.

Plot the cut on the x axis, but then fill using the second categorical variable. This has the effect of
visualizing the row percents from the table above. Here it is the percent of price_range, within each type
of cut.

ggplot(dsmall, aes(x=cut, fill=price_range)) + geom_bar()

0

100

200

300

400

Fair Good Very Good Premium Ideal
cut

co
un

t

price_range

[−2.5,2.5]

(2.5,7.5]

(7.5,12.5]

(12.5,17.5]

(17.5,22.5]

The default is a stacked barchart. So add the argument position=dodge inside the geom_bar layer to put
the bars side by side.

11

ggplot(dsmall, aes(x=cut, fill=price_range)) + geom_bar(position = "dodge")

0

50

100

150

200

Fair Good Very Good Premium Ideal
cut

co
un

t

price_range

[−2.5,2.5]

(2.5,7.5]

(7.5,12.5]

(12.5,17.5]

(17.5,22.5]

And look, an automatic legend. What if I wanted to better compare cut within price range? This is the
column percentages. Just switch which variable is the x axis and which one is used to fill the colors!

ggplot(dsmall, aes(x=price_range, fill=cut)) + geom_bar(position = "dodge")

12

0

50

100

150

200

[−2.5,2.5] (2.5,7.5] (7.5,12.5] (12.5,17.5] (17.5,22.5]
price_range

co
un

t

cut

Fair

Good

Very Good

Premium

Ideal

And this easy change is why we love ggplot2.

Continuous v. Continuous

Scatterplot

The most common method of visualizing the relationship between two continuous variables is by using a
scatterplot.

With ggplot we specify both the x and y variables, and add a point.

ggplot(dsmall, aes(x=carat, y=price)) + geom_point()

13

0

5000

10000

15000

1 2 3 4
carat

pr
ic

e

Adding lines to the scatterplots Two most common trend lines added to a scatterplots are the “best
fit” straight line and the “lowess” smoother line. This is done by adding a geom_smooth() layer.

ggplot(dsmall, aes(x=carat, y=price)) + geom_point() + geom_smooth()

14

0

5000

10000

15000

20000

1 2 3 4
carat

pr
ic

e

Here the point-wise confidence interval for this lowess line is shown in grey. If you want to turn the confidence
interval off, use se=FALSE. Also notice that the smoothing geom uses a different function or window than
the lowess function used in base graphics.

Here it is again using the ggplot plotting function and adding another geom_smooth() layer for the lm
(linear model) line in blue, and the lowess line (by not specifying a method) in red.

ggplot(dsmall, aes(x=carat, y=price)) + geom_point() +
geom_smooth(se=FALSE, method="lm", color="blue") +
geom_smooth(se=FALSE, color="red")

15

0

10000

20000

30000

1 2 3 4
carat

pr
ic

e

Continuous v. Categorical

Create an appropriate plot for a continuous variable, and plot it for each level of the categorical variable by
shading the plots or coloring the lines depending on the group.

Overlaid density plots

You could fill the density curves depending on the group, but then it’s hard to see overlap.

ggplot(dsmall, aes(x=depth, fill=cut)) + geom_density()

16

0.0

0.2

0.4

0.6

55 60 65 70
depth

de
ns

ity

cut

Fair

Good

Very Good

Premium

Ideal

We can adjust the transparency of the density curve by applying a value to alpha inside the density layer.
Alpha is a measure of transparency, from 0=clear to 1=opaque.

ggplot(dsmall, aes(x=depth, fill=cut)) + geom_density(alpha=.3)

17

0.0

0.2

0.4

0.6

55 60 65 70
depth

de
ns

ity

cut

Fair

Good

Very Good

Premium

Ideal

Now we can see that there are some fair cut diamonds with depths around 60. This peak was hidden from
us before.

You could also just color the lines and leave the fill alone.

ggplot(dsmall, aes(x=depth, color=cut)) + geom_density()

18

0.0

0.2

0.4

0.6

55 60 65 70
depth

de
ns

ity

cut

Fair

Good

Very Good

Premium

Ideal

We won’t talk about changing colors or the background in this lab, but the yellow is pretty hard to read.

Grouped boxplots

ggplot is happy to do grouped boxplots. Put the continuous variable on the y, categorical on the x.

ggplot(dsmall, aes(x=price_range, y=carat)) + geom_boxplot()

19

1

2

3

4

[−2.5,2.5] (2.5,7.5] (7.5,12.5] (12.5,17.5] (17.5,22.5]
price_range

ca
ra

t

Adding violins to the boxplot A violin plot is like a density plot, turned on its side, and reflected
around the axis for symmetry purposes. Overlaying a boxplot and a violin plot serves a similar purpose
to Histograms + Density plots. It shows outliers, the location of most the data, and better shows the
shape/skew of the distribution. Let’s also fill the geometries with the same color as what is on the x-axis.
Not 100% needed but nice for display sometimes.

ggplot(dsmall, aes(x=price_range, y=carat, fill=price_range)) +
geom_violin(alpha=.1) +
geom_boxplot(alpha=.5, width=.2)

20

1

2

3

4

[−2.5,2.5] (2.5,7.5] (7.5,12.5] (12.5,17.5] (17.5,22.5]
price_range

ca
ra

t

price_range

[−2.5,2.5]

(2.5,7.5]

(7.5,12.5]

(12.5,17.5]

(17.5,22.5]

Go Back to Week 3

21

	[Introduction (video)]
	Student Learning Outcomes
	The syntax of ggplot
	Required arguments

	The Diamonds Data

	[Univariate (One Variable) (video)]
	Categorical variables
	Tables
	Barcharts / Barplots

	Continuous variable
	Histograms
	Density plots
	Histograms + density
	Boxplots
	New variable

	[Bivariate (Two Variables) (video)]
	Categorical v. Categorical
	Two-way Tables
	Grouped bar charts

	Continuous v. Continuous
	Scatterplot

	Continuous v. Categorical
	Overlaid density plots
	Grouped boxplots

	Go Back to Week 3

