Chapter 2
Data Analytics Lifecycle

Dr. E. Hamouda
CSCI 398: Introduction to Data Science
Spring 2017

Outline
- Roles of a Data Analytics Project Team
- Data Analytics Lifecycle
- Case Study to apply the data analytics lifecycle

Your Thoughts?
- How to Approach an Analytics Problem -- a Project in General

 - How do you plan for an analytic project?
 - Do you follow a methodology or some kind of framework?

Need For a Process to Guide Data Science Projects
- Well-defined processes can help guide any analytic project
- Break large projects into smaller pieces
- Spend time to plan and scope the work
- Documenting adds rigor and credibility

 ➔ Data Analytics Lifecycle

- Focus of Data Analytics Lifecycle is on Data Science projects

Value of Using the Data Analytics Lifecycle
- Focus your time
- Ensure rigor and completeness
- Enable better transition to members of the cross-functional analytic teams

 - Repeatable
 - Scale to additional analysts
 - Support validity of findings

Key Roles for a Successful Analytics Project - Team
Key Roles for a Successful Analytics Project - Team

<table>
<thead>
<tr>
<th>Role</th>
<th>Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business User</td>
<td>Domain area expert and benefits from the end results & can consult and advise project team on value of end results and how these will be operationalized.</td>
</tr>
<tr>
<td>Project Sponsor</td>
<td>Responsible for the start of the project; provides the motivation for the project & core business problem (requirements); provides the funding & will gauge the degree of value from the final outputs of the working team.</td>
</tr>
<tr>
<td>Project Manager</td>
<td>Ensures key milestones and objectives are met on time and at expected quality.</td>
</tr>
<tr>
<td>Data Engineer</td>
<td>Provides technical skills, assists data management & extraction, supports the creation of the sandbox and the data that goes into it.</td>
</tr>
<tr>
<td>DBA</td>
<td>Creates the DB environment to support the analytical needs of the working team.</td>
</tr>
<tr>
<td>Data Scientist</td>
<td>Provides subject matter expertise for analytical techniques, data modeling, and ensures overall analytical objectives are met.</td>
</tr>
</tbody>
</table>

Data Analytics Lifecycle

- Data Analytics Lifecycle defines the analytics process and best practices from discovery to project completion.

Data Analytics Lifecycle

- **Discovery**
 1. Learning the Business Domain
 2. Resources
 3. Framing the Problem
 4. Identifying Key Stakeholders
 5. Interviewing the Analytics Sponsor
 6. Developing Initial Hypotheses
 7. Identifying Potential Data Sources

Phase 1: Discovery

- **Learning the Business Domain**
 - Understand the domain area
 - Determine how much business or domain knowledge is needed to orient the data scientist to develop models in Phase 3 & 4 and interpret results downstream.

- **Learn from the past**
 - Have there been previous attempts in the organization to solve this problem?
 - If so, why did they fail? Why are we trying the Model again? How have things changed?

- **Resources**
 - Assess available
 - technology, tools, system
 - data – sufficient to meet your needs
 - people for the working team
 - time for the project in calendar time and person-hours
 - Do you have sufficient resources to attempt the project? If not, can you get more?
Frame the problem:

- State the problem, why it is important, and to whom?
- Clearly articulate the current situation and pain points
- Share the problem with the stakeholders.
- Identify what needs to be achieved in business terms and what needs to be done to meet the needs
- Identify the success/failure criteria.
 - What is the goal? What are the criteria for success? What’s “good enough”?
 - What is the failure criterion (when do we just stop trying & settle for what we have)?

Identify key stakeholders

- Identify key stakeholders and their interest in the project
 - Each stakeholder may expect different results from the project
 - Each stakeholder may have different criteria to judge the project
- Even if you are “given” the analytic problem you should work with clients to clarify and frame the problem
- Interview stakeholders
 - What is the business problem you’re trying to solve?
 - What is your desired outcome? etc.

Phase 1: Discovery

Formulate Initial Hypotheses/ideas to be tested

- H1, H2, H3, … Hn
- Gather and assess hypotheses from stakeholders and domain experts
- Preliminary data exploration to discuss with stakeholders during the hypothesis forming stage

Identify Data Sources - Begin Learning the Data

- Identify the candidate data sources to test the IH
- Capture aggregate sources for describing the data and providing high-level understanding.
- Review the raw data.
- Evaluate the data structures and tools needed.
- Scope the kind of data needed for this kind of problem.

Case Study to Track the Phases in the Data Analytics Lifecycle

Situation Synopsis

- Retail Bank, Yoyodyne Bank wants to improve the Net Present Value (NPV) and retention rate of customers
- They want to establish an effective marketing campaign targeting customers to reduce the churn rate by at least 5%.
- The bank wants to determine if those customers are worth retaining. In addition, the bank wants to analyze reasons for customer attrition and what they can do to keep them
- The bank wants to build a data warehouse to support Marketing and other related customer care groups

Components of Analytic Plan

<table>
<thead>
<tr>
<th>Phase 1: Discovery</th>
<th>Learning the Business Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>equity, fixed income, regulatory, investment banking, risk management (retail/wholesale) etc.</td>
</tr>
</tbody>
</table>

Resources

- Analytic sandbox, OLAP, EDW

Analytic Plan

- How do we identify customer churn/not?
- How can we improve the Net Present Value and retention rate of customers?
- Risk: the project will fail if we can’t identify valid predictors of churn.

Identifying people and Key Stakeholders

- Working team and business users from bank

Developing Initial Hypotheses

- Transaction volume and type are key predictors of churn rates.

Identifying Data Sources

- EDW, 5 months of customers history

Phase 2: Data Preparation

- Includes steps: to explore, preprocess, and condition data.
- Tends to be the most labor-intensive step in the analytics lifecycle
- Often at least 50% of the data science project’s time
- It is generally the most iterative phase
Phase 2: Data Preparation

- **Prepare Analytic Sandbox/Workspace**
 - Perform ELT (Extra, Load, Transform)
 - Determine needed transformations
 - Assess data quality and structure
 - Derive statistically useful measures
 - Extract data & select dataset to use
 - Determine if more data needs to be collected/acquired.

- **Learning about the data:** Becoming familiar with the data is critical
 - List your data sources
 - List what’s needed vs. what’s available
 - Highlights gaps - identifies data not currently available
 - Identifies data outside the organization that might be useful

- **Data Conditioning**
 - Clean and normalize data
 - Discern what you keep vs. what you discard

- **Survey & Visualize**
 - Overview, zoom & filter then maintain data of interest

- **Descriptive Statistics**
 - Use data visualization tools to gain an overview of the data
 - Does the data contain unexpected values or indicator of dirty data?

Phase 3: Model Planning

- **Identify candidate models to apply to the data set (clustering, classifying, finding relationships in the data, etc.)**
 1. Data Exploration
 2. Variable Selection
 3. Model Selection

- **Data Exploration**
 - Assess the data to understand the relationship between variables
 - Assess the structure of the data - this dictates the tools and analytic techniques for the next phase

- **Variable Selection**
 - Explore the data to select the variables and methods
 - A common way to do this is to use data visualization tools
 - Inputs from stakeholders and domain experts
 - Iterative testing to confirm the most significant variables

- **Model Selection**
 - choose an analytical technique, or several candidates, based on the end goal of the project
Phase 3: Model Planning

- After conducting research on churn prediction, you have identified many methods for analyzing customer churn.
- At this point, a Data Scientist would assess the methods and select the best model for the situation.
- Example of other analysts approaching a similar problem.

<table>
<thead>
<tr>
<th>Phase 3:</th>
<th>Model Planning – Analysis Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer Packaged Goods</td>
<td>Multiple linear regression, automatic relevance determination (ARD), and decision tree</td>
</tr>
<tr>
<td>Retail Banking</td>
<td>Multiple regression</td>
</tr>
<tr>
<td>Retail Business</td>
<td>Logistic regression, ARO, decision tree</td>
</tr>
<tr>
<td>Wireless Telecom</td>
<td>Neural network, decision trees, hierarchical-neurofuzzy systems, rule engines, logistic regression</td>
</tr>
</tbody>
</table>

Case Study to Track the Phases in the Data Analytics Lifecycle

<table>
<thead>
<tr>
<th>Components of Analytic Plan</th>
<th>Phase 3: Model Planning – Analytics Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic regression to identify most influential factors predicting churn</td>
<td></td>
</tr>
</tbody>
</table>